Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity
نویسندگان
چکیده
BACKGROUND Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. METHODS The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. FINDINGS Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5(o)) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5(o) and 3.1(o)). In slow motions, relative accuracy varied from 2(o) to 7(o) depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. INTERPRETATION Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. CONCLUSIONS Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to the conditions of operation.
منابع مشابه
Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time
BACKGROUND Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven't been extensively documented. The objectives of this study are: 1) to assess the change in absolute and rela...
متن کاملInertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy
BACKGROUND Joints kinematics assessment based on inertial measurement systems, which include attitude and heading reference system (AHRS), are quickly gaining in popularity for research and clinical applications. The variety of the tasks and contexts they are used in require a deep understanding of the AHRS accuracy for optimal data interpretation. However, published accuracy studies on AHRS ar...
متن کاملIntegration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment
Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...
متن کاملAn upper extremity kinematic model for evaluation of hemiparetic stroke.
Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate th...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کامل